Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.217
Filtrar
1.
Dev Cell ; 59(8): 1043-1057.e8, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38508182

RESUMO

Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
2.
Proc Natl Acad Sci U S A ; 121(11): e2314199121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451940

RESUMO

Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Prótons , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Conformação Proteica , Trifosfato de Adenosina , Rotação , ATPases Translocadoras de Prótons/metabolismo
3.
Nat Struct Mol Biol ; 31(4): 657-666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316880

RESUMO

Mitochondrial adenosine triphosphate (ATP) synthase uses the proton gradient across the inner mitochondrial membrane to synthesize ATP. Structural and single molecule studies conducted mostly at neutral or basic pH have provided details of the reaction mechanism of ATP synthesis. However, pH of the mitochondrial matrix is slightly acidic during hypoxia and pH-dependent conformational changes in the ATP synthase have been reported. Here we use single-particle cryo-EM to analyze the conformational ensemble of the yeast (Saccharomyces cerevisiae) ATP synthase at pH 6. Of the four conformations resolved in this study, three are reaction intermediates. In addition to canonical catalytic dwell and binding dwell structures, we identify two unique conformations with nearly identical positions of the central rotor but different catalytic site conformations. These structures provide new insights into the catalytic mechanism of the ATP synthase and highlight elastic coupling between the catalytic and proton translocating domains.


Assuntos
Prótons , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , Conformação Proteica , Concentração de Íons de Hidrogênio
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396915

RESUMO

Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphorylation and provides most of the energy (ATP) required by human cells. The mitochondrial genes MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes correlate with various clinical phenotypes, which include several neurodegenerative and multisystemic disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote biochemical dysfunctions. We discuss the possible structural changes induced by the most common variants found in patients by considering the recent cryo-electron microscopy structure of human ATP synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature, including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and nuclease-based strategies, and discuss their potential translation into clinical trials.


Assuntos
Doenças Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Humanos , Trifosfato de Adenosina , Microscopia Crioeletrônica , DNA Mitocondrial/genética , Genes Mitocondriais , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação
5.
Med Res Rev ; 44(3): 1183-1188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38167815

RESUMO

Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F1FO-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F1FO-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The FO, which is an integral domain in the membrane, dissipates the chemical potential difference for H+, a proton motive force (Δp), across the inner membrane to generate a torsion. The F1 domain-the hydrophilic portion responsible for ATP turnover-is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F1 and FO domains support the energy transduction for ATP synthesis. The dissipation of Δp by means of an H+ slip correlated to rotor free-wheeling of the F1FO-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.


Assuntos
Adenosina Trifosfatases , Doenças Mitocondriais , Humanos , Adenosina Trifosfatases/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
6.
J Biol Chem ; 300(3): 105690, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280428

RESUMO

The hydrolytic activity of the ATP synthase in bovine mitochondria is inhibited by a protein called IF1, but bovine IF1 has no effect on the synthetic activity of the bovine enzyme in mitochondrial vesicles in the presence of a proton motive force. In contrast, it has been suggested based on indirect observations that human IFI inhibits both the hydrolytic and synthetic activities of the human ATP synthase and that the activity of human IF1 is regulated by the phosphorylation of Ser-14 of mature IF1. Here, we have made both human and bovine IF1 which are 81 and 84 amino acids long, respectively, and identical in 71.4% of their amino acids and have investigated their inhibitory effects on the hydrolytic and synthetic activities of ATP synthase in bovine submitochondrial particles. Over a wide range of conditions, including physiological conditions, both human and bovine IF1 are potent inhibitors of ATP hydrolysis, with no effect on ATP synthesis. Also, substitution of Ser-14 with phosphomimetic aspartic and glutamic acids had no effect on inhibitory properties, and Ser-14 is not conserved throughout mammals. Therefore, it is unlikely that the inhibitory activity of mammalian IF1 is regulated by phosphorylation of this residue.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Proteínas Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Animais , Bovinos , Humanos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Hidrólise , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Serina/metabolismo , Fosforilação
7.
Plant Physiol Biochem ; 206: 108231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056039

RESUMO

Drought is thought to be one of the major global hazards to crop production. Understanding the role of melatonin (Mel) during plant adaptive responses to drought stress (DS) was the aim of the current investigation. Involvement of hydrogen sulfide (H2S) was also explored in Mel-regulated mechanisms of plants' tolerance to DS. A perusal of the data shows that exposure of tomato plants to DS elevated the activity of mitochondrial enzymes viz. pyruvate dehydrogenase, malate dehydrogenase, and citrate synthase. Whereas the activity of ATP synthase and ATPase was downregulated under stress conditions. Under DS, an increase in the expression level of heat shock proteins (HSPs) and activation level of antioxidant defense system was observed as well. On the other hand, an increase in the activity of NADPH oxidase and glycolate oxidase was observed along with the commencement of oxidative stress and accompanying damage. Application of 30 µM Mel to drought-stressed plants enhanced H2S accumulation and further elevated the activity of mitochondrial enzymes, activation level of the defense system, and expression of HSP17.6 and HSP70. Positive effect of Mel on these attributes was reflected by reduced level of ROS and related damage. However, application of H2S biosynthesis inhibitor DL-propargylglycine reversed the effect of Mel on the said attributes and again the damaging effects of drought were observed even in presence of Mel. This observation led us to conclude that Mel-regulated defense mechanisms operate through endogenous H2S under DS conditions.


Assuntos
Sulfeto de Hidrogênio , Melatonina , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Resistência à Seca , Proteínas de Choque Térmico/metabolismo , Antioxidantes/metabolismo , Homeostase , Sulfeto de Hidrogênio/metabolismo
8.
Life Sci ; 336: 122293, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030056

RESUMO

Mitochondria are important organelles in cells responsible for energy production and regulation. Mitochondrial dysfunction has been implicated in the pathogenesis of many diseases. Oligomycin sensitivity-conferring protein (OSCP), a component of the inner mitochondrial membrane, has been studied for a long time. OSCP is a component of the F1Fo-ATP synthase in mitochondria and is closely related to the regulation of the mitochondrial permeability transition pore (mPTP). Studies have shown that OSCP plays an important role in cardiovascular disease, neurological disorders, and tumor development. This review summarizes the localization, structure, function, and regulatory mechanisms of OSCP and outlines its role in cardiovascular disease, neurological disease, and tumor development. In addition, this article reviews the research on the interaction between OSCP and mPTP. Finally, the article suggests future research directions, including further exploration of the mechanism of action of OSCP, the interaction between OSCP and other proteins and signaling pathways, and the development of new treatment strategies for mitochondrial dysfunction. In conclusion, in-depth research on OSCP will help to elucidate its importance in cell function and disease and provide new ideas for the treatment and prevention of related diseases.


Assuntos
Doenças Cardiovasculares , Doenças Mitocondriais , Neoplasias , Humanos , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , ATPases Mitocondriais Próton-Translocadoras , Doenças Mitocondriais/tratamento farmacológico , Neoplasias/tratamento farmacológico
9.
Biol Trace Elem Res ; 202(4): 1335-1344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37580526

RESUMO

A recent report has shown the active site of the beta subunit of mitochondrial ATP synthase is probably the site of action of Cr(III) action, independent of the insulin signaling pathway. This works appears to answer an important question about the mode of action of Cr(III) at a molecular level when supplied in supra-nutritional levels to rodents. However, as with any good research, the research also raises several questions. The relationship between this study and the results of rodent studies of chromium supplementation and between this study and the current understanding the chromium(III) transport and detoxification system are put into perspective.


Assuntos
Insulina , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Insulina/metabolismo , Cromo/química , Transdução de Sinais
10.
Biol Trace Elem Res ; 202(4): 1325-1334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105318

RESUMO

Chromium supplementation has been notably recognized for its potential health benefits, especially in enhancing insulin sensitivity and managing glucose metabolism. However, recent studies have begun to shed light on additional mechanisms of action for chromium, expanding our understanding beyond its classical effects on the insulin-signaling pathway. The beta subunit of mitochondrial ATP synthase is considered a novel site for Cr(III) action, influencing physiological effects apart from insulin signaling. The physiological effects of chromium supplementation have been extensively studied, particularly in its role in anti-oxidative efficacy and glucose metabolism. However, recent advancements have prompted a re-evaluation of chromium's mechanisms of action beyond the insulin signaling pathway. The discovery of the beta subunit of mitochondrial ATP synthase as a potential target for chromium action is discussed, emphasizing its crucial role in cellular energy production and metabolic regulation. A meticulous analysis of relevant studies that were earlier carried out could shed light on the relationship between chromium supplementation and mitochondrial ATP synthase. This review categorizes studies based on their primary investigations, encompassing areas such as muscle protein synthesis, glucose and lipid metabolism, and antioxidant properties. Findings from these studies are scrutinized to distinguish patterns aligning with the new hypothesis. Central to this exploration is the presentation of studies highlighting the physiological effects of chromium that extend beyond the insulin signaling pathway. Evaluating the various independent mechanisms of action that chromium impacts cellular energy metabolism and overall metabolic balance has become more important. In conclusion, this review is a paradigm shift in understanding chromium supplementation, paving the way for future investigations that leverage the intricate interplay between chromium and mitochondrial ATP synthase.


Assuntos
Proteínas Quinases Ativadas por AMP , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Cromo/farmacologia , Cromo/metabolismo
11.
Biol Trace Elem Res ; 202(4): 1318-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133723

RESUMO

The micronutrient trivalent chromium, 3 + (Cr(III)), is postulated to play a role in carbohydrate, lipid, and protein metabolism. Although the mechanisms by which chromium mediates its actions are largely unknown, previous studies have suggested that pharmacological doses of chromium improve cardiometabolic symptoms by augmenting carbohydrate and lipid metabolism. Activation of AMP-activated protein kinase (AMPK) was among the many mechanisms proposed to explain the salutary actions of chromium on carbohydrate metabolism. However, the molecular pathways leading to the activation of AMPK by chromium remained elusive. In an elegant series of studies, Sun and coworkers recently demonstrated that chromium augments AMPK activation by binding to the beta-subunit of ATP synthase and inhibiting its enzymatic activity. This mini-review attempts to trace the evolving understanding of the molecular mechanisms of chromium leading to the hitherto novel pathway unraveled by Sun and coworkers and its potential implication to our understanding of the biological actions of chromium.


Assuntos
Proteínas Quinases Ativadas por AMP , Cromo , Cromo/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Metabolismo dos Lipídeos , Carboidratos , Trifosfato de Adenosina , Metabolismo dos Carboidratos
12.
J Biol Chem ; 300(2): 105603, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159856

RESUMO

Mammalian F-ATP synthase is central to mitochondrial bioenergetics and is present in the inner mitochondrial membrane in a dynamic oligomeric state of higher oligomers, tetramers, dimers, and monomers. In vitro investigations of mammalian F-ATP synthase are often limited by the ability to purify the oligomeric forms present in vivo at a quantity, stability, and purity that meets the demand of the planned experiment. We developed a purification approach for the isolation of bovine F-ATP synthase from heart muscle mitochondria that uses a combination of buffer conditions favoring inhibitor factor 1 binding and sucrose density gradient ultracentrifugation to yield stable complexes at high purity in the milligram range. By tuning the glyco-diosgenin to lauryl maltose neopentyl glycol ratio in a final gradient, fractions that are either enriched in tetrameric or monomeric F-ATP synthase can be obtained. It is expected that this large-scale column-free purification strategy broadens the spectrum of in vitro investigation on mammalian F-ATP synthase.


Assuntos
Membranas Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Animais , Bovinos , Trifosfato de Adenosina/metabolismo , Dimerização , Mitocôndrias Cardíacas/química , Membranas Mitocondriais/química , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Centrifugação com Gradiente de Concentração
13.
Proc Natl Acad Sci U S A ; 120(51): e2303713120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091291

RESUMO

The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.


Assuntos
Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras , Camundongos , Animais , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Cálcio/metabolismo
14.
Bioorg Med Chem ; 95: 117504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871508

RESUMO

Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Trifosfato de Adenosina/metabolismo , Antituberculosos/química , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo
15.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830628

RESUMO

Monomers, dimers, and individual FOF1-ATP synthase subunits are, presumably, involved in the formation of the mitochondrial permeability transition pore (PTP), whose molecular structure, however, is still unknown. We hypothesized that, during the Ca2+-dependent assembly of a PTP complex, the F-ATP synthase (subunits) recruits mitochondrial proteins that do not interact or weakly interact with the F-ATP synthase under normal conditions. Therefore, we examined whether the PTP opening in mitochondria before the separation of supercomplexes via BN-PAGE will increase the channel stability and channel-forming capacity of isolated F-ATP synthase dimers and monomers in planar lipid membranes. Additionally, we studied the specific activity and the protein composition of F-ATP synthase dimers and monomers from rat liver and heart mitochondria before and after PTP opening. Against our expectations, preliminary PTP opening dramatically suppressed the high-conductance channel activity of F-ATP synthase dimers and monomers and decreased their specific "in-gel" activity. The decline in the channel-forming activity correlated with the reduced levels of as few as two proteins in the bands: methylmalonate-semialdehyde dehydrogenase and prohibitin 2. These results indicate that proteins co-migrating with the F-ATP synthase may be important players in PTP formation and stabilization.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Subunidades Proteicas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Trifosfato de Adenosina
16.
Commun Biol ; 6(1): 836, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573449

RESUMO

The coexistence of two pools of ATP synthase in mitochondria has been largely neglected despite in vitro indications for the existence of reversible active/inactive state transitions in the F1-domain of the enzyme. Herein, using cells and mitochondria from mouse tissues, we demonstrate the existence in vivo of two pools of ATP synthase: one active, the other IF1-bound inactive. IF1 is required for oligomerization and inactivation of ATP synthase and for proper cristae formation. Immunoelectron microscopy shows the co-distribution of IF1 and ATP synthase, placing the inactive "sluggish" ATP synthase preferentially at cristae tips. The intramitochondrial distribution of IF1 correlates with cristae microdomains of high membrane potential, partially explaining its heterogeneous distribution. These findings support that IF1 is the in vivo regulator of the active/inactive state transitions of the ATP synthase and suggest that local regulation of IF1-ATP synthase interactions is essential to activate the sluggish ATP synthase.


Assuntos
Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Camundongos , Animais , ATPases Mitocondriais Próton-Translocadoras/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo
17.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604582

RESUMO

The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Proteínas de Saccharomyces cerevisiae , DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias , Mutação , Saccharomyces cerevisiae/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell Death Dis ; 14(7): 413, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37433784

RESUMO

ATPase Inhibitory Factor 1 (IF1) regulates the activity of mitochondrial ATP synthase. The expression of IF1 in differentiated human and mouse cells is highly variable. In intestinal cells, the overexpression of IF1 protects against colon inflammation. Herein, we have developed a conditional IF1-knockout mouse model in intestinal epithelium to investigate the role of IF1 in mitochondrial function and tissue homeostasis. The results show that IF1-ablated mice have increased ATP synthase/hydrolase activities, leading to profound mitochondrial dysfunction and a pro-inflammatory phenotype that impairs the permeability of the intestinal barrier compromising mouse survival upon inflammation. Deletion of IF1 prevents the formation of oligomeric assemblies of ATP synthase and alters cristae structure and the electron transport chain. Moreover, lack of IF1 promotes an intramitochondrial Ca2+ overload in vivo, minimizing the threshold to Ca2+-induced permeability transition (mPT). Removal of IF1 in cell lines also prevents the formation of oligomeric assemblies of ATP synthase, minimizing the threshold to Ca2+-induced mPT. Metabolomic analyses of mice serum and colon tissue highlight that IF1 ablation promotes the activation of de novo purine and salvage pathways. Mechanistically, lack of IF1 in cell lines increases ATP synthase/hydrolase activities and installs futile ATP hydrolysis in mitochondria, resulting in the activation of purine metabolism and in the accumulation of adenosine, both in culture medium and in mice serum. Adenosine, through ADORA2B receptors, promotes an autoimmune phenotype in mice, stressing the role of the IF1/ATP synthase axis in tissue immune responses. Overall, the results highlight that IF1 is required for ATP synthase oligomerization and that it acts as a brake to prevent ATP hydrolysis under in vivo phosphorylating conditions in intestinal cells.


Assuntos
Adenosina , Inflamação , Proteínas Mitocondriais , Animais , Humanos , Camundongos , Trifosfato de Adenosina , Diferenciação Celular , Camundongos Knockout , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Mitocondriais/metabolismo
19.
Int Rev Cell Mol Biol ; 377: 45-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268350

RESUMO

The inner mitochondrial membrane, thylakoid membrane of chloroplasts and bacterial plasma membrane play a central role in energy transduction processes exploiting a ubiquitous membrane-bound enzyme complex known as F1FO-ATPase. The enzyme maintains the same function of ATP production between the species and a basic molecular mechanism of enzymatic catalysis during ATP synthesis/hydrolysis. However, small structural divergences distinguish prokaryotic ATP synthases, embedded in cell membranes, from eukaryotic ones localized in the inner mitochondrial membrane designating the bacterial enzyme as drug targets. In antimicrobial drug design, the membrane-embedded c-ring of the enzyme becomes the key protein of candidate compounds, such as diarylquinolines in tuberculosis, that inhibit the mycobacteria F1FO-ATPase without affecting mammalian homologs. The drug known as bedaquiline can target uniquely the structure of the mycobacterial c-ring. This specific interaction could address at the molecular level the therapy of infections sustained by antibiotic-resistant microorganisms.


Assuntos
Mycobacterium tuberculosis , Animais , Mycobacterium tuberculosis/metabolismo , Adenosina Trifosfatases/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Membranas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
20.
Sci Rep ; 13(1): 9972, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340059

RESUMO

Defects in ATP synthase functioning due to the substitutions in its two mitochondrially encoded subunits a and 8 lead to untreatable mitochondrial diseases. Defining the character of variants in genes encoding these subunits is challenging due to their low frequency, heteroplasmy of mitochondrial DNA in patients' cells and polymorphisms of mitochondrial genome. We successfully used yeast S. cerevisiae as a model to study the effects of variants in MT-ATP6 gene and our research led to understand how eight amino acid residues substitutions impact the proton translocation through the channel formed by subunit a and c-ring of ATP synthase at the molecular level. Here we applied this approach to study the effects of the m.8403T>C variant in MT-ATP8 gene. The biochemical data from yeast mitochondria indicate that equivalent mutation is not detrimental for the yeast enzyme functioning. The structural analysis of substitutions in subunit 8 introduced by m.8403T>C and five other variants in MT-ATP8 provides indications about the role of subunit 8 in the membrane domain of ATP synthase and potential structural consequences of substitutions in this subunit.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...